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Chaos synchronization in coupled systems by applying pinning control
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Chaos synchronization in coupled chaotic oscillator systems with diffusive and gradient couplings forced by
only one local feedback injection signal (boundary pinning control) is studied. By using eigenvalue analysis,
we obtain controllable regions directly in control parameter space for different types of coupling links (includ-
ing diagonal coupling and nondiagonal couplings). The effects of both diffusive and gradient couplings on
chaos synchronization become clear. Some relevant factors on control efficiency such as coupled system size,
transient process, and feedback signal intensity are also studied.
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Since last decade the investigations of both control [1-17]
and synchronization [18-24] in chaotic systems have at-
tracted much attention in nonlinear dynamics field. For re-
cent review papers on these subjects, see, e.g., Refs. [25],
and references therein. Usually the objective of chaos control
is to purposely achieve a desirable regular state (such as
stationary or periodic motion) in an originally chaotic sys-
tem. In contrast, chaos synchronization mostly focuses on
self-organized synchronization behaviors in coupled chaotic
systems. However, they are closely connected. Generally
speaking, chaos synchronization can also be viewed as one
special control if a chaotic target state is selected. The tech-
niques and analysis methods independently developed in
chaos control and chaos synchronization have quickly
merged after the early stage of studying.

Recently due to both theoretical interests and practical
applications, the research hot spot has shifted from the study
of low-dimensional systems with finite low degrees of free-
dom to that of spatiotemporal chaotic systems characterized
with much larger number of positive Lyapunov exponents.
Several novel control techniques on spatiotemporal systems
have been proposed so far, such as the local feedback (pin-
ning) method [5-7], time-delay feedback method [8], feed-
back technique in Fourier space [9], phase space compres-
sion method [10], random itinerant feedback technique [11],
and tailoring wavelets approach [12]. Among them, the pin-
ning method by using local feedbacks has been extensively
studied and tested in various systems, for example, coupled
map lattices, coupled chaotic oscillators, partial differential
equation systems, and so on [5-7,13—17]. On the other hand,
in the study of chaos synchronization of coupled identical
systems with the nearest diffusive coupling, Heagy et al. [19]
well analyzed the stability of synchronous chaotic states by
using the Fourier mode transform and the scaling transform
among transverse modes directly in parameter space. In Ref.
[24], one of us extended the above analysis to investigate the
case with both the diffusive and gradient couplings. How-
ever, the diagonalization of the Jacobian via Fourier mode
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transform is only possible for the coupled system whose cou-
pling configuration is shift invariant. Therefore, recently
some new theories successfully dealing with the stability of
synchronous chaotic states with various coupling configura-
tions, such as the master stability function method [21] and
the eigenvalue analysis method [22,23], have been devel-
oped, which solved, once and for all, the problem of syn-
chronous stability for any linear coupling of chaotic oscilla-
tors. Both the above synchronization analysis approaches are
represented in the space of Re(\) and Im(\), with N being
the eigenvalue of coupling matrix, and not explicitly shown
in a control parameter space. For the sake of application,
however, one always hopes to obtain a phase diagram ex-
plaining all different dynamical behaviors explicitly (or sim-
ply a controllability parameter region in our control prob-
lem). In the present work, by using the eigenvalue analysis
method we generalize the pinning method developed in
chaos control field to achieve synchronization in coupled
chaotic oscillators. The controllability conditions with only
one injection signal (boundary pinning control) for diagonal
and nondiagonal couplings are theoretically analyzed, and
some relevant problems on control efficiency are investi-
gated.

We consider N coupled identical nonlinear oscillators
with nearest couplings [24] under the first site being con-
trolled,

du; e—r e+r
EL :f(uj) + TF(Mj+l - I/tj) + TF(”j—l - “j)

+Cr[s(t)_uj]5j,ls j:1,2,...,N, (1)

where u; e R", the function f is nonlinear and capable of
exhibiting chaotic solutions, &€ and r are scalar diffusive and
gradient coupling parameters, respectively, I denotes a n
X n constant matrix linking coupled variables, the driving
signal from a free oscillator s(¢) could conduct a chaotic
motion {ds(r)/dt=f[s(1)]}, ¢ indicates pinning strength, and
6;1=1 for j=1 and 9;,=0 otherwise. Here periodic bound-
ary conditions are adopted. With control, Egs. (1) can be
linearized around the target state s(z), and we get the cou-
pling matrix
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Before our model study, we should emphasize that, in
Ref. [24], by using the Fourier mode transform and the scal-
ing relationship one of us has intensively studied the chaos
synchronization problem of the free systems without the con-
trol term in Egs. (1), and successfully answered the question:
under what coupling strength conditions can we observe the
synchronization in the free systems? In that work the stabil-
ity boundaries of all transverse modes are simultaneously
drawn by justifying the boundary of a single mode with a
scaling relation, and we obtain the stable synchronization
regions explicitly in the control parameter space from the
overlap of the stable regions of all transverse modes. In con-
trast, in the present work, we intend to study the control
problem and want to solve a different question: under what
coupling conditions can we accomplish chaos synchroniza-
tion in the coupled systems if we switch on our control term
in Egs. (1)? These two works are closely connected, how-
ever, both the objectives and the analytical methods are dis-
tinct, as we will see below.

As now one oscillator is pinned, the translational invari-
ance is immediately broken and the usual Fourier transform
method utilized in Refs. [19,24] is not workable. We have to
rely on more general method, for example, the eigenvalue
analysis. The essential idea of the eigenvalue analysis ap-
proach proposed in Refs. [22,23] is to separate the compli-
cated stability problem of Egs. (1) (or any linearly coupled
systems) into two independent problems: one is to analyze
the stable regions of one single mode equation

C;—’Z = (Df(s) - [Re(\) + i Im(\)]T') . 3)

which depends on the single-site parameters only [such as
the reference orbit s(z), the Jacobian Df(s), and the inner
linking matrix I']; the other is to analyze the eigenvalue dis-
tribution of the linear coupling matrix A, which depends on
the coupling parameters, € and r, the driving parameter c,
and the system size N only, and is independent of the inner
dynamics. The key point for the synchronous state to be
stable is that all eigenvalues of the matrix A except the one
with A=0 (corresponding to the spatially homogeneous state)
are well located in the stable region in Eq. (3). The stable
region surrounded by the so-called critical curve can be nu-
merically obtained. The eigenvalue distribution can also be
numerically calculated or theoretically analyzed for some
special cases, such as the matrix A or B in controlled system
studied below. Thus, the problem of the synchronous stabil-
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FIG. 1. The four types of critical curves for (a) diagonal cou-
pling, (b) type 1, (c) type II, and (d) type III nondiagonal couplings.
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ity has been well solved. For more details, see Refs. [22,23].
For convenience, we put a minus sign in front of the N in Eq.
(3). Obviously, this more general approach can easily solve
chaotic synchronization in coupled identical systems with
nearest coupling, which has been studied by Heagy et al.
[19] with the Fourier mode transform method.

As an example, without losing generality, the model of
coupled Lorenz oscillators has been chosen, in which the
single system reads x;=c(xy—x;), X3=px;—X,—X|X3, X3
=x1X,—Bx3. 0=10.0, B=1.0, and p=28.0; at these param-
eters the system is chaotic, which is characterized by a posi-
tive largest Lyapunov exponent Ay=0.502> 0. Here we have
chosen the same model and parameter setting as Ref. [24]. In
Figs. 1(a)-1(d), we plot the critical boundaries in the Re(\)
—Im(\) parameter space for different coupling links I'’s by
using the results in our previous paper [24] and applying a
simple scaling transformation to both the abscissa and the
ordinate. Figures 1(a)-1(d) correspond to four types of criti-
cal curves of the diagonal coupling, the nondiagonal types I,
II, and IIT couplings for the linking matrices

1 00 000 000
r=fo 10, {1 00J, |01 0],
001 000 000
010
and (0 O O],

00O

respectively. We use f. to represent critical curve (Im(\)
=f,[Re(N)]). The critical curves are obtained by the compu-
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tation of the largest Lyapunov exponent of the linearization
equation [Eq. (3)]; the numerical method is similar to the
classical algorithm of the largest Lyapunov exponent for
single nonlinear system used in Ref. [26], except that now
the impacts of Re(\) and Im(\) have to be considered. For
the case of the diagonal coupling, the stability is controlled
by the value of Re(\) only [not Im(\)], and the threshold
value of the stable-unstable boundary at the real axis R,
=N\=0.502.

For an extreme case [an infinitely strong driving (c
— + )], the NX N matrix A given above should be changed
to

e—r
2
eE+r E—Tr
—-& 0
2 2
B=
e—r
2
e+r
0 0 —-&
2 (N=1)X (N~1)

4)
after we remove both the first row and the first column. The
physical meaning is straightforward: As the first oscillator
can be surely pinned to the target state for ¢ — +%, we only
need to pay attention to the stability of the remaining N—1
oscillators. A rigorous mathematical proof can be found in
Lemma 1.2 in Ref. [27]. The N—1 eigenvalues of —B can be
explicitly given [28]

j=12,....N-1 (5

)\j=8— Ve? = r? cos %T,
which has also been derived in different circumstances [3,7].
In Ref. [7], in order to control the system to a homogeneous
stationary state, the eigenvalue distribution of Eq. (5) has
been used to schematically show the control efficiency. The
above eigenvalue spectrum is substantially different from
that of the coupling circular matrix for the free systems,
which has been explicitly given in Eq. (2b) in Ref. [24].
However, the geometrical structure of the eigenvalue distri-
bution of —B 1s also simple. If e=r, Im(\))=0 and \;
=Re(\)) =g~ VeZ—12 cos L ; all eigenvalues are real and they
are located exactly on the real axis as one horizontal line
from x=e-— \'sz—r2 cos y (the leftmost point) to x=g
+\e2=12 cos i (the rlghtmost one). Whereas if e<r,
Re(\))=¢ and Im(\ ;) =\ri—gZcos Z; all eigenvalues are
complex and they stay at x=¢ as one vertical line from
y=—\r’—g*cos 7 (the lowest point) to y=yr?—¢? cos 7 (the
uppermost one). Therefore, by the demand that all eigenval-
ues of linking matrices get into stable domains of diagrams
in Fig. 1, what we need to do next is to analyze the eigen-
value distribution with the above simple geometrical struc-
ture (one horizontal line for e=r and one vertical line for
e <r) and consider the restriction of different critical curves
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FIG. 2. The controllable regions in the e-r parameter space for
different I”’s. Both the system size N and the driving force ¢ are
infinite. The positions of the curves [/, /5, and /5 are analytically
obtained.

for different coupling matrices. Note, the eigenvalue distri-
bution of the coupling —B is independent of different I"s.

First, let us consider an infinite array (N— +, cosﬁ
—1); the extension to finite number is straightforward and
will be studied below. For the diagonal matrix in Fig. 1(a), if
e=r, the necessary condition for stable synchronization is
that the smallest eigenvalue \; (\,=&—\e’~r?) is larger
than or equal to R.. R.=0.502. Directly we have

e=r= \/RC(28—RC). (6)

If e <r, for this simplest case, all eigenvalues should locate
at the right-hand of the vertical straight line x=R.. We get
another inequality

r>e=R,. (7)

Thus, in the e-r space we obtain the controllability parameter
region, which 1is surrounded by the two curves: r
=yR.(2e=R,) (curve [,) and e=R, (line 1,) [Fig. 2(a)].

We can apply the above idea to other more complicated
cases. For nondiagonal type-I link [Fig. 1(b)], if e<r, the
synchronous state becomes unstable after \; and \y_; go
across the critical curve f,. at the same time; correspondingly
we have \r2—e2=F.(¢) and, further,

\’f3(8)+822 r>e. (8)

As a result, the field surrounded by the two functions: r
=\R.(2e—-R,) (curve [|) and r= f (e)+&? (curve 1,) consti-
tutes the controllable region [Fig. 2(b)]. R.=3.5.

For type-II critical curve [1(c)], it has to be separately
considered for y=<1I. and I, <y=I.. (R./,1.) is the chang-
ing point, as indicated by an arrow in Fig. 1(c). If e<r and
=R, the synchronous chaos state is always stable; this
situation is analogous to the diagonal coupling. Whereas if
e<r and R, >e>R_, it gets unstable after the two eigen-
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values, \; and Ay_;, move across the lower branch of the
critical curve f at R, >x>R,; this case is similar to the
above type-I link. Hence the controllability parameter region
is constructed by the three functions r=+R.(2e—R,) (curve
1), r=yf1*(e)+&* for R >e>R, (curve l,), and =R, for
r=1I. (line [3), as illustrated in Fig. 2(c). R.=1.36, .=23.2,
RCI =2.1, and Icr =6.6.

For the last case, type-III [(d)], the second threshold R, ,
has to be considered. If € >r, we should put all N-1 eigen-
values into the stable region (R.;,R.,), and we have &
—Ve’=r*=R. and e+\e*—r* =R, or, equivalently,

—
r= \"Rc,l(z8 _Rc,l) (9)
and
—
r= VRc,2(28 - RC,Z)- (10)

As a consequence, we obtain the controllability parameter
region explicitly encircled by the three curves [Fig. 2(d)]: r
=VR.1(2e-R.;) (curve I}), r=y\R.»(2e6-R.,) (curve I,),
and r=\f>(e)+&? (curve l3). R.;=5.32 and R, ,=19.12.

In Figs. 2(a)-2(d), we predict the controllable regions for
different I'’s by applying the above analyses. The theoretical
results are in good agreement with our numerical simula-
tions, indicated by the dotted regions, and now the control-
lability conditions become clear. First, we may ask can we
realize control (or synchronization) by using only one injec-
tion feedback into such infinitely large systems (N— + @) by
varying the diffusive and gradient couplings ¢ and r? The
answer is yes. More specifically, for the diagonal coupling
[Figs. 1(a) and 2(a)], we can do so by increasing the gradient
coupling r; for type IT nondiagonal coupling [Figs. 1(c) and
2(c)], we can also do so after the diffusive coupling & is
larger than a critical value (¢=R./); for type I coupling
[Figs. 1(b) and 2(b)], it is again correct for intermediate val-
ues of € and r around =r, and it is unavailable for either
larger or smaller & (r) with fixed r (&); and for type III [Figs.
1(d) and 2(d)], quite different from other cases, it is possible
only under finite coupling strengths of both & and r; in this
case, the parameter region is a close set.

Second, there are some common features for all cou-
plings. It is valuable to briefly analyze the geometrical struc-
ture for the two major critical curves r=f(g)=\R.(2e—R,)
and  r=fy(e)=\fo(e)+e>. As fi(R/2)=0, fi(R)=R.,

dfe) a2 T k.
dl—g|£=RC= 1, dl—g|sﬂw=0, and # >0 for £> 7, the curve

f) starts from point (R,/2,0), monotonically increases, and
intersects tangentially with the diagonal at r=e=R_; f, also
intersects with the diagonal at point (R.,R.), since f(R,)
=R,. Consequently in Fig. 2 all the controllable regions start
from one critical parameter point (R.,R,), and the spaces are
blank for either € or r being smaller than R.. Note, R, can be
different for different couplings. Thus we know that both &
and r play constructive roles in chaos controllability, and
sole coupling without the opposite one [& (or r) alone] is not
sufficient for the observation of successful control, which is
only possible for e=R, and r=R, instead.
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FIG. 3. (Color online) The same as Fig. 2 for finite system sizes
N. N is 5 (dashed line), 10 (dotted line), 20 (dash-dotted line), and
infinity (solid line), respectively. In (a), under the parameters indi-
cated by stars, the transient time increases exponentially with the
system size. While at other parameters within the controllable re-
gion, linear increasing is observed.

Third, for the extreme situation (e=r), the bidirectionally
coupled system with the periodic boundary [Egs. (1)] degen-
erates to a one-way coupled system, where the control prob-
lem has been extensively studied recently [3,4,6,7]. Some of
us discovered that the existence of gradient force is of crucial
importance for enhancing the control efficiency [6,7]. One
might intuitively believe that the stronger the force, the bet-
ter it is. From the knowledge in Fig. 2(d) for type III link,
however, we know this is not always the case and sufficiently
large one-way coupling sometimes may even break control.
Note, most existing studies have chosen one-way coupled
lattice maps as model (usually logistic map, which has only
one variable), where non-diagonal coupling is impossible.

Next we clarify the effect of finite system size N by con-
sidering the cos 3 term in Eq. (5) for different I’s. In Fig. 3,
we plot the controllability parameter regions for N being 5
(dashed line), 10 (dotted line), 20 (dash-dotted line), and
infinity (solid line), respectively. Apparently, the larger N, the
smaller synchronization region we get; as N is moderately
large (for instance, N=20, cos f,=0.988 ~ 1), the region gets
undistinguished with that for infinite N.

From practical applications point of view, it is very im-
portant to study transient process. Much short transient is
preferred and believed as a high control efficiency. The evo-
lution process, shown in Fig. 4(a) for diagonal coupling, &
=2 and r=4, where successful control is achieved at very
short time 7= 20, tells us the control efficiency with the cur-
rent boundary pinning method is really very high. The un-
derlying mechanism with the synchronization cascade propa-
gation from j to j+1 and subsequently extension to the
whole array has been discovered [Fig. 4(a)]. Therefore, a
linear increase of the average transient time versus the sys-
tem size is expected, which has been well confirmed in
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FIG. 4. (Color online) (a)—(c) The time evolution of the variable
difference A under different parameter sets (a) e=2, r=4, (b) e=1,
r=4, and (c) £=0.5, r=4. Aj(t)=(x; —x)? +(y;- —y1)? +(z; -71)%. N
=30. (d), (e) The linear and exponentlal dependencies of the tran-
sient time T vs the system size N for (d) e=2, r=4 and (e) e=1,
r=4.

Fig. 4(d). Clearly this characteristic is extremely useful for
applications. However, at some parameters close to the criti-
cal curves [indicated with stars in Fig. 3(a)], e.g., e=1 and
r=4, we also find another kind of transient behavior that all
coupled oscillators transit to chaotic synchronization simul-
taneously with an extremely long transient time (¢~ 61000)
[Fig. 4(b)] and an exponential dependence of T on N [Fig.
4(e)]. This case might be similar to the usual transient chaos
process around critical control parameter. For comparison,
we plot the case for e=0.5 and r=4 (¢<R,=0.502) in Fig.
4(c), where synchronization is unavailable. Therefore, from
the above numerical results we know that if it is possible, in
applications we should purposely choose parameters around
e=r (far away the critical curves as possible) to short waiting
time and achieve high efficiency.

In the end, the situation for finite driving strength ¢ is
briefly explored in Fig. 5. Although now we cannot get the
explicit expression of the eigenvalue spectrum from the cou-
pling matrix —A as Eq. (5), the eigenvalue analysis method is
still applicable. For the simplest case (the diagonal cou-
pling), we numerically compute the N eigenvalues A;, ana-
lyze the distribution for different (e,r) in the Re(\)—Im(\)
space, and show the results in Fig. 5 for different N and
¢ [N=10 and 50 in Figs. 5(a) and 5(b), respectively]. Above
these lines, synchronization is stable. Apparently a larger
driving c is needed for larger N; this consists with our heu-
ristic understanding.

In conclusion, we have studied chaos synchronization in
coupled chaotic oscillators with both diffusive and gradient
couplings by using the chaos control technique (pinning
method) and the eigenvalue analysis method. It is the first
time to study in detail the pinning control problem with non-
diagonal couplings and obtain controllability parameter re-
gions explicitly in control parameter space for all different
types of critical curves of the coupling links, whose classifi-
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FIG. 5. (Color online) The controllable regions (above the lines)
for diagonal coupling for both finite system size N and finite driving
strength ¢. (a) N=10; from upper to lower, ¢=10 (dashed), 100
(dotted), 1000 (dash-dotted), and infinity (solid line), respectively.
(b) N=50; from upper to lower, ¢=1000 (dashed), 10000 (dotted),
100 000 (dash-dotted), and infinity (solid line), respectively.

cation seems to have been exhausted, to the best of our
knowledge. Some remarkable findings are both diffusive and
gradient couplings are of significant importance for success-
ful control, the system with individual coupling (zero diffu-
sive coupling or zero gradient coupling) is uncontrollable
with the present pinning method, and larger one-way cou-
pling strength with equal diffusive and gradient couplings
may even break stable synchronous state for type-III curve.
Although we have used the numerical results (characteristic
critical curves for nondiagonal links) directly from our pre-
vious paper on coupled Lorenz oscillators in free system
[24], it is simply for convenience, and the analytical method
and the theoretical results presented in this paper could be
applicable to other systems easily. Some more comparisons
with the results in Ref. [24], where the trivial case with di-
agonal link was not discussed, are interesting. There, for
nondiagonal type III coupling, chaos synchronization is un-
available for the system size being larger than 5; for type I
and type II couplings, much larger intensities for both the
diffusive and gradient couplings are needed as the system
size N increases. Therefore, in free system, in fact we cannot
realize chaos synchronization for sufficiently large system,
let alone infinite N. In sharp contrast with this point, stable
homogeneous chaotic synchronization in the extremely large
systems (infinite N) has been quickly reached after we sub-
stitute only one site with the external forcing signal (infinite
c), and the boundary pinning control has been demonstrated
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to be highly successful for all links (Fig. 2) with strikingly
high control efficiency (Fig. 4).
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